
Vampir Introduction

Trace-based Performance Analysis

Thomas Ilsche, ORNL

May 17, 2011



2 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Vampir – Tool Suite

• Help you with optimizing your parallel application

• Provides a view into the execution of the application

• More detailed view than profiling
(temporal and spatial dependencies etc.)

• Vampir does not fix your code
Vampir does not optimize your code
You are the expert – you draw the conclusions



3 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Motivation

• Why performance analysis?

– Efficient usage of limited resources

– Increase scalability for bigger simulations

• Profiling and Tracing

– Include optimization as a phase in your development

– Use tools instead of printf-solutions



4 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Profiling and Tracing

• Instrumentation

– Detect events (points of interest) during execution

– Handle that information in a measurement library

• Profiling

– Aggregates the available information

– Count the time spent in a function and sum it up

• Trace recording

– Save the individual event with a timestamp and 
processes/thread information



5 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Profiling and Tracing

• Tracing advantages

– Preserve the temporal and spatial relationships of events

– Profiles can be calculated from a trace but not vice versa

• Tracing disadvantages

– Traces can become very large

– More perturbation than just profiling

– Instrumentation and tracing is more complex 

• Larger I/O

• Event buffering

• Clock synchronization issues



6 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Common Event Types

• All Types have timestamp and process information

• Enter and leave of a function/region

– Region ID

• Send and receive of messages (MPI, GPU<->Host)

– Sender, receiver, size, tag, communicator

• Collective communication (MPI)
– Root, communicator, (size)

• Performance counter values (PAPI)

– Counter ID, value



7 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Vampir – Tool Suite

• The Vampir Performance Analysis Suite consists of

– VampirTrace: Collect trace data

– Vampir: The Graphical User Interface for trace analysis

– VampirServer: A parallel performance analysis engine

Vampir

Trace

Vampir

Trace

Trace

File

(OTF)

Vampir 7

Trace

Bundle

VampirServer

CPU CPU

CPU CPUCPU CPU

CPUCPU

Multi-Core

Program

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core

Program



8 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

VampirTrace

• VampirTrace consists of

– Trace library

– Compiler wrapper

– Tools to process trace files

• VampirTrace collects timestamped events

– No aggregation of data (by default)

– All information is preserved for analysis

– Trace files can become large and hard to handle

– VampirTrace uses two file handles / process, which is a 
difficult for LUSTRE to handle on large applications

• Work in progress to fix this



9 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

VampirTrace

• VampirTrace supports the tracing of

– Function calls, using

• Compiler instrumentation

• Manual instrumentation (regions)

• Binary instrumentation (dyninst)

• Wrapping library calls

– MPI

• Point to point

• Collectives

• I/O

– Hardware Counters (PAPI)

– CUDA events

• Memory copy

• Kernel execution



10 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Vampir

• GUI to analyze trace files (OTF)

• Main concept: Timeline

• GUI is QT based – available on Linux, Mac, Windows



11 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

VampirServer

• Parallel analysis engine for Vampir

– MPI

– OpenMP

• Scales to > 10,000 analysis processes

• Loads the entire uncompressed trace into memory



12 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Finding Performance Bottlenecks

• Inefficient Communication patterns

• Load imbalance / serial parts of the application

• Memory bound computation
– Inefficient cache usage

– TLB misses

– Use HW counters (PAPI) to detect

• I/O bottlenecks

• Most time consuming function



13 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Effects due to Tracing

• I/O overhead (flush)

– Visibly marked in the trace

– ‘Long‘ time for I/O

– Ideally only once at the end (invisible) or during barriers

– Avoid by applying runtime filters

• Measurement overhead
– Overhead on function calls

– Invisible

– Avoid instrumenting tiny frequently called functions

– Compare total runtime to get an upper bound on overhead



14 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Conclusion

• Performance analysis is very important in HPC

• Use the right tool for your needs

• Use tracing with caution

• Contact me for questions, problems or feature wishes



15 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Thank you

• Contact:

– Thomas Ilsche, ORNL
5700 B206
tt1@ornl.gov (Thomas.Ilsche@zih.tu-dresden.de)
865-241-6293

mailto:tt1@ornl.gov

